There is an increasing demand for wireless power charging of mobile electronic devices, electric vehicles, biomedical implants and IoT sensor networks. Many of the already available wireless power transmission systems are based on inductive coupling and the size ranges in the cm’s scale, linked to the large surface area requirement. A competing technology is based on an RF approach, with small size chip but impractical power levels of pW to µW, and efficiency close to unity. The alternative working principle that we propose results in a more compact solution that can be reduced to mm’s chip size while producing reasonable output power (1 mW range) at low frequency ranges (50 Hz to 1 kHz).
We have developed an electrodynamic wireless power transmission (EWPT) system that relies on the magnetic-to-mechanic-to electrical conversion from a transmitter to a remote resonator, through electrodynamic transduction. The mechanical motion of a permanent magnet is converted into electrical power, when the magnet is set in motion/rotation, by a time-varying magnetic field, next to the receiver windings.